Integrating Clipped Spherical Harmonics

Laurent Belcour - Guofu Xie
University of Montreal
Christophe Hery - Mark Meyer
Pixar Animation Studio
Wojciech Jarosz
Dartmouth College
Derek Nowrouzezahrai
McGill University

Motivation

  • Spherical Integrals are common in rendering
    • Shading on surfaces
    • Shading in volumes
    • Importance sampling
    • ...

  • Analytical forms are not common

  • But are needed by real-time rendering

Motivation: BRDF Integration

  • (Quasi) Monte-Carlo
    • Approximative (contains error)
    • Large number of samples
  • Real-Time Rendering
    • Sampling is out of the question
    • Needs efficiency, allows approximate
  • Analytical solutions are welcome
    • Must include the light (spherical domain)
BRDF
light

A Few Existing Methods

Polygonal lights
[Arvo 1995]                     [Heitz et al. 2015]
Sphere lights
[Dupuy et al. 2017]
Linear lights
[Heitz et al. 2017]
  • But restricted to specific spherical functions

Our Solution

  • Integrate Spherical Harmonics expansions on spherical polygons
  • Efficient algorithm
    • scales well with higher order SH
  • We incorporate such analytical solution
    • for shading on surfaces
    • for shading in volumes
  • "What about shadowing/bias ?"

Inspiration: Axial Moments

  • Function of the dot product, $f(\omega) = \langle \omega \cdot \color{red}{\omega_i} \rangle^\color{green}{n}$
  • Recursive integration [Arvo 1995]
    • Linear with respect to the power $\color{green}{n}$
    • Each step integrate another power cosine
$\color{red}{\omega_i}$
$\langle \omega \cdot \color{red}{\omega_i} \rangle^\color{green}{3}$
$\langle \omega \cdot \color{red}{\omega_i} \rangle^\color{green}{5}$

Outline of Our Method

$$ \int_\mathcal{P} f(\boldsymbol\omega) \mbox{d}\boldsymbol\omega $$
$$ \sum f_{l,m} \int_\mathcal{P} y_{l}^{m}(\boldsymbol\omega) \mbox{d}\boldsymbol\omega $$
$$ \sum c_{k,i} \int_\mathcal{P} \langle \boldsymbol\omega \cdot \boldsymbol\omega_i \rangle^{k} \mbox{d}\boldsymbol\omega $$
lobe sharing

Insight: An Intermediate Step

Decomposing Rotated Zonal Harmonics

That's All Folks!

                            
/* Compute the integral of the SH decomposition with
 * `f` coefficients over a spherical polygon `poly`.
 */
function ComputeIntegral(flm, poly) {
    
    // Generate a set of vectors
    basis = SharedDirections();

    
    // Compute the conversion matrices
    //   `A` converts SH to Zonals
    //   `P` converts Zonals to Axials
    A  = ZonalWeights(basis);
    P  = AxialWeights(basis);
    AP = A*P;

    
    // Convert the Axial expansion
    cpw = flm.transpose() * AP;

    
    // Return the integral using Arvo's method
    m = AxialMoments(poly, basis);
    return cpw.dot(m);
}
                            
                        
$$ \mathbf{f}^T \mathbf{y} = \sum_{l,m} \mathcal{\color{green}{f_{l,m}}} \left[ \int_{\mathcal{\color{darksalmon}{P}}} y_{l,m}(\omega) \right] $$
$$ \mathbf{c}^T = \mathbf{f}^T \times AP $$
$$ \mathbf{f}^T \mathbf{y} = \underbrace{\mathbf{c}^T}_{\mathbf{f}^T \times AP} \times \mathbf{m} $$

That's All Folks! (How Really?)

  • Redudant computation in Arvo's method

  • We improve performance by
    • sharing axial moment directions
    • sharing Arvo's recursive evaluation

  • Details are in the paper

Algorithmic Complexity

  • Linear w.r.t. number of SH coefficients

Applications

real-time rendering
importance sampling
hierarchichal warping
control variate
adding shadows

Surface and Volume Shading


Surface area light

Surface portal light

Volume area light

Volume portal light

Surface Shading: Area Light


Surface area light
$$ \color{green}{\rho(\boldsymbol{\omega}_i, \cdot}) \simeq \mathbf{f} = \mathbf{y}_i^T, \mbox{M} \quad \mbox{with} \, \, \mathbf{y}_i = y_{l,m}(\boldsymbol{\omega}_i) $$ [Westin et al. 1992]

Surface Shading: Portal Light


Surface portal light

Volume Shading: Area Light


Volume area light

Volume Shading: Portal Light


Volume portal light

Application: Real-Time Rendering

Application: Control Variates


Our real-time demo lacks shadows
  • Analytical solutions have bias
    • they do not account for shadows
    • they approximate the true BRDF
  • Combine Closed-Form and Monte-Carlo results
    $$ I = \color{green}{\int_{\mathcal{P}} y\left(\boldsymbol\omega\right) \mbox{d}\boldsymbol\omega} \, - \, \color{blue}{\sum_{k} \left[ y\left(\boldsymbol\omega_k\right) - f\left(\color{blue}{\boldsymbol\omega_k}\right) \right]} $$
  • Visual 'Side effect'
    • No noise in unshadowed regions
    • Ensure unbiasness w.r.t. $f(\boldsymbol{\omega})$

Application: Control Variates

  • Dragon scene

Application: Control Variates

  • Fog scene

Application: Control Variates

  • San Miguel scene

Summary

  • We integrate Spherical Harmonics
    • over spherical polygons
    • with a closed-form expression
    • that is efficient (linear cost)
  • We apply this new tool
    • to surface and volume shading
    • to polygonal portal lights
    • to importance sampling

Thank you for your attention

paper code
available at belcour.github.io/blog